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Abstract After presenting an overview about variational problems on probability
measures for functionals involving transport costs and extra terms encouraging or
discouraging concentration, we look for optimality conditions, regularity properties
and explicit computations in the case where Wasserstein distances and interaction
energies are considered.
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1 Introduction

As a starting point for the paper, we present a short overview of possible variational
problems involving transport costs between distributions of mass and their concen-
trations. The general problem we are interested in is

min
µ,ν∈P(�)

F(µ, ν) := T(µ, ν)+ F(µ)+ G(ν),

where the functional T quantifies in some way the distance between the two prob-
ability measures µ and ν according to a transport cost criterion, and F and G are
functionals over the space P(�) (the space of probability measures over a domain�)
with opposite behaviour: the first favours spread measures and penalizes concentra-
tion while the latter, on the other hand, favours concentrated measures. Obviously
there are several other sub-problems that may be of interest, for instance the minimi-
zations of the two separate functionals

Fν(µ) := T(µ, ν)+ F(µ) and Fµ(ν) = T(µ, ν)+ G(ν),
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where each time one of the variables is frozen. Also imposing constraints like F(µ) ≤
H, G(ν) ≤ L . . . instead of adding penalizations in the functionals may sometimes be
considered (and this is in fact the same as adding penalizations through some 0/+ ∞
functions).

These minimization problems are likely to appear in several phenomena both in
nature and in decision science. For instance in [3,5,8] these variational problems have
been proposed for urban planning models, where the spread measure µ stands for
inhabitants, the concentrated measure ν for services and they have to be close in a
transportation distance sense. We may say that the idea of considering the distribution
of population and firms in a city and the fact that population prefers to be spread and
firms to be next to each other has been brought into the mathematical community, in
the optimal transportation framework, through [4] and its authors. On the other hand,
a possible choice of the functional Fν has been proposed recently as a model for the
formation of a certain kind of leaves or in general for ramified biological structures: if
ν = δ0 represents the point where the nutrient arrives to the leaf, then the shape of the
leaf is modelled to optimize the quantity of light it receives from the sun taking also
into account the effective transport cost for bringing the nutrient all over its shape.

We present here some choices for the functionals T and G. The choice of F is in
fact easier since a very good class of concentration-penalizing functionals is given by
local convex functionals over measures, for instance

F(µ) =
⎧
⎨

⎩

∫

�

f (u)dL if µ = u · L

+∞ otherwise,
(1.1)

for any convex function f with f (0) = 0 which is superlinear at infinity. For these
functionals we refer to [1]. Here L is a reference measure that may be chosen as the
Lebesgue measure Ld if� ⊂ R

d. By Jensen inequality, spread measures with constant
density are optimal for these functionals.

Possible choices of T are the following:

• terms involving Monge-Kantorovich optimal transport cost, as in Wasserstein dis-
tances T(µ, ν) = Wp

p(µ, ν) (Wasserstein);
• terms taking into account traffic congestion effects, as in [5] where T(µ, ν) =

||µ − ν||2X ′ for a vector space X ⊂ H1(�) and this choice is detailed and justified
(congestion);

• terms reflecting the natural ramified structure of a transportation network (branch-
ing) as in [10], where a new distance on probability measures is introduced accord-
ing to this criterion, or in [6], where the same quantity is introduced in a different
way, in the case µ = δx0 .

This last possibility is the most suitable for model involving natural branching struc-
tures like leaves, while the first two seem to be quite natural in urban planning.

For the functional G, before presenting a list of examples, we give a possible defi-
nition of the concept of concentration-preferring.

Definition 1 We say that G : P(�) → R is a concentration-preferring functional if it
holds G(t�ν) ≤ G(ν) for any measure ν ∈ P(�) and any 1-Lipschitz continuous map
t : � → �.

It is easy to show that any G with this property is minimized by any measure δx0 ,
with x0 ∈ �. We list here some functionals satisfying this definition:
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• G(ν) = � spt(ν) (atomic), as in location problems, where the corresponding T is
usually of Wasserstein type;

• (subadditive, see [1])

G(ν) =
⎧
⎨

⎩

∑

k∈N

g(ak) if ν = ∑

k∈N

akδxk

+∞ otherwise

for a subadditive function g with g(0) = 0 and g′(0) = +∞ (if g = 1 on (0, +∞)

and g(0) = 0 we recover the previous case);
• G(ν) = inf

{H1(�)
∣
∣spt(ν) ⊂ �, � compact and connected

}
as in the irrigation

problem, [2], where T = W1 and a constraint on G is considered (length);
• G(ν) = ∫

�×� w(d(x, y))ν(dx)ν(dy) for an increasing function w (interaction).

Actually the two first cases are functionals which decrease under the effect of any map
t and not only under 1-Lipschitz ones. The first one has been presented separately and
not as a particular case of the second because of its large presence in literature. The
last choice for G is a well-known functional on probability measures which represents
the interaction energy (or cost) between the particles composing ν. It has been first
studied in a transportation framework by McCann in [7], where displacement con-
vexity results are given, with the aim of showing uniqueness results for variational
problems.

In [3] and [5] two combinations of these functional have been studied for urban
planning purposes: the Wasserstein + subadditive and the congestion + interaction
cases, respectively. The congestion + subadditive case has been excluded in [5] since it
leads to a trivially infinite functional, and so in this paper we analyze the remaining
one, i.e. the Wasserstein + interaction case. Many ideas are taken from [5], up to the
fact that elliptic regularity is replaced by considerations on Monge–Ampère equation.
Moreover, some extra devices are performed and a careful use of Monge–Kantorovich
theory is needed.

The main purpose of the paper is giving necessary optimality conditions and trying
to identify the global minimizers. Since most optimality conditions are obtained by
small perturbations, several statements are valid for local minima as well. Anyway in
this paper we exploit an approximation process which does not provide, a priori, infor-
mation on local minima which are not globally minimizing. At the end of the paper a
section is devoted to a specific example where explicit solutions may be obtained.

2 Preliminaries on optimal transportation

In this section we recall some tools and definitions that are well known in the optimal
transport community and that we will need in the sequel. Our main reference is [9].

Definition 2 Given two probability measures µ and ν on a space � and an l.s.c. cost
function c : �×� → [0, +∞] we consider the problem

(K) min

⎧
⎨

⎩

∫

�×�
c dγ

∣
∣γ ∈ P(�×�), (π1)�γ = µ, (π2)�γ = ν

⎫
⎬

⎭
, (2.1)



132 J Glob Optim (2007) 38:129–141

and the minimizers for this problem are called optimal transport plans between µ and
ν. Should γ be of the form (id× t)�µ for a measurable map t : � → �, the map t would
be called optimal transport map from µ to ν.

An important tool will be duality theory and to introduce it we need in particu-
lar the notion of c-transform (a kind of generalization of the well-known Legendre
transform).

Definition 3 Given a function χ : � → R we define its c-transform (or c-conjugate
function) by

χc(y) = inf
x∈� c(x, y)− χ(x).

Moreover, we say that a function ψ is c-concave if there exists χ with ψ = χc and we
denote by 
c(�) the set of c-concave functions.

It is well known a duality result stating the following equality (see Theorem 1
together with the following Remark on c-concavity in [9]), also known as Duality
Formula:

min(K) = sup
ψ∈
c(�)

∫

�

ψ dµ+
∫

�

ψc dν. (2.2)

Definition 4 The functions ψ realizing the maximum in (2.2) are called Kantorovich
potentials for the transport from µ to ν.

Since we will use c(x, y) = 1
2 |x − y|2, let us denote by 
2(�) the set of c-concave

functions with respect to this quadratic cost. It is not difficult to check that

ψ ∈ 
2(�) ⇒ x �→ x2

2
− ψ is a convex function on R

d restricted to �.

Notice that on a bouded � with diameter D any ψ ∈ 
2(�) is in fact 2D-Lipschitz
continuous. We summarize here some useful results for the quadratic case c(x, y) =
1
2 |x − y|2, which can be found in Theorem 15 of [9] or throughout its proof.

Theorem 2.1 Given µ and ν probability measures on a connected � ⊂ R
d there exists

unique an optimal transport plan γ and it is of the form (id × t)�µ, provided µ is abso-
lutely continuous. Moreover, there exists also at least a Kantorovich potential ψ , and
the gradient ∇ψ is uniquely determined µ−a.e. (in particular ψ is unique up to additive
constants, provided the density of µ is positive a.e. on �). The optimal transport map t
and the potential ψ are linked by t(x) = x − ∇ψ(x) and so t is the gradient of a convex
function. Moreover it holds ψ(x)+ ψc(t(x)) = c(x, t(x)) for µ−a.e. x.

Starting from the values of the problem (K) in (2.1) we can define a set of distances
over P(�). For any p ≥ 1 set

Wp(µ, ν) = (
min(K) with c(x, y) = |x − y|p)1/p,

and for simplicity we will restrict our analysis to the case p = 2. We recall that it holds
(see also Theorem 13 in [9]), by the Duality Formula,

1
2

W2
2(µ, ν) = sup

ψ∈
2(�)

∫

�

ψ dν +
∫

�

ψc dµ. (2.3)
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The following result on Wasserstein distances can be obtained by putting together
Theorem 85 and Theorem 87 of [9].

Theorem 2.2 If � is compact, for any p ≥ 1 the function Wp is in fact a distance
over P(�) and the convergence with respect to this distance is equivalent to the weak
convergence of probability measures. In particular any functional µ �→ Wp(µ, ν) is
continuous with respect to weak topology.

The next step of our analysis is concerned with some regularity properties of t and
ψ (the optimal transport map and the Kantorovich potential, respectively) and their
relations with the densities ofµ and ν. It is easy, just by a change-of-variables formula,
to transform, in the case of regular maps and densities, the equality ν = t�µ into the
PDE v(t(x)) = u(x)/|Jt|(x), where u and v are the densities of µ and ν, respectively,
and J denotes the determinant of the Jacobian matrix. Recalling that we may write
t = ∇φ with φ convex, we get the Monge–Ampère equation

Mφ = u
v(∇φ) , (2.4)

where M denotes the determinant of the Hessian

Mφ = det Hφ = det

[
∂2φ

∂xi ∂xj

]

i,j
.

This equation up to now is satisfied by φ = id − ψ in a formal way only.

Definition 5 We say that a functionφ satisfies (2.4) in the Brenier sense if (∇φ)�u·Ld =
v · Ld (and this is actually the sense to be given to this equation); on the other hand
we say that φ satisfies (2.4) in the classical sense if it is of class C 2 and the equation
holds pointwise.

Other notions of solutions (in the Alexandroff or viscosity sense, for instance) are
often used but we introduced here only those that we actually need in order to present
the following regularity result (which is well summarized in Theorem 50 of [9]):

Theorem 2.3 If u and v are C0,α(�) and are both bounded from above and from below
on the whole � by positive constants and � is a convex open set, then the unique Bre-
nier solution φ of (2.4) belongs to C2,α(�) ∩ C1,α(�) and satisfies the equation in the
classical sense.

3 Optimality conditions for the interaction case

We are here concerned with the minimization problem for the functional Fµ, when
the transport term is given by T(µ, ν) = 1

2 W2
2(µ, ν) and the concentration one is an

interaction term of the form

G(ν) =
∫

�×�
V(|x − y|2)ν(dx)ν(dy), (3.1)

with V : [0, +∞[→ [0, +∞[ a regular increasing function. From now on � will be the
closure of a convex nonempty open set in R

d.
A priori, a minimizer for this functional may be an arbitrary probability measure

on the set �, even a singular one. Our goal is to prove, under suitable assumptions
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and by means of optimality conditions and of an approximation process, that it is in
fact an absolutely continuous measure with bounded density.

We provide here an easy optimality condition for the minimization of Fµ. We do
not go into details in the computation because it follows the same scheme as in [3].
The approximation by measures with positive densities that we are going to use works
in this case too, while the alternative proof by convex analysis that may be found in
[3] does not, simply because there is no convexity in the term G.

Theorem 3.1 If a probability measure ν ∈ P(�) is a minimizer for Fµ, then there exists
a constant m such that

ψ + Tν ≥ m; ψ + Tν = m ν-a.e.,

where ψ is a Kantorovich potential for the transport from ν to µ and we define

Tν(x) =
∫

�

2V(|x − y|2) ν(dy).

Proof Let us start from the case when µ is absolutely continuous with positive den-
sity. In this case we perform convex variations on an optimal measure ν of the form
νt = ν + t(ν1 − ν) for an arbitrary ν1 ∈ P(�): if we call ψt the unique Kantorovich
potential from νt to µwhich vanishes at a certain fixed point x0 ∈ �, we get (by means
of Duality Formula)

∫

�

ψt dνt +
∫

�

ψc
t dµ+

∫

�×�
V(|x − y|2)νt(dx)νt(dy)

≥
∫

�

ψt dν +
∫

�

ψc
t dµ+

∫

�×�
V(|x − y|2)ν(dx)ν(dy).

After erasing the term
∫

�
ψc

t dµ and dividing by t we pass to the limit, and we know
that ψt converges uniformly (by Ascoli-Arzelà) to the unique Kantorovich potential
ψ from ν to µ vanishing at x0. This provides, at the limit,

∫

�

(ψ + Tν)dν1 ≥
∫

�

(ψ + Tν)dν.

Being ν1 arbitrary we get that ν−a.e. the functionψ+Tν must be equal to its infimum,
and this is the thesis.

To generalize the result to an arbitrary measure µ, just proceed by approximation.
This can be performed as in [3] and provides the same formula where ψ becomes just
one of the possibly many Kantorovich potentials instead of the only one. The main
difference between this case and the case of a measureµwith positive density is in fact
the lack of uniqueness (even up to additive constants) of the Kantorovich potential.

�

The problem in the condition of Theorem 3.1 lies in the fact that the measure ν

appears only in a very implicit way (both in ψ and in Tν), and this does not allow to
derive any estimate on it. We will consequently need to pass through an approxima-
tion process, exactly as in [5]. Fixed a minimizer ν̄ for Fµ, we will consider a sequence
of problems (Pε)ε given by the minimization of

P(�) � ν �→ T(µε , ν)+ G(ν)+ δεA(ν)+ εW2
2(ν, ν̄ε),
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where

• (µε)ε is a sequence of probability measures approximating µ with Lipschitz con-
tinuous strictly positive densities uε;

• the functional A is given by

A(ν) =
⎧
⎨

⎩

∫

�

a(v)dLd if ν = v · Ld,

+∞ otherwise,

for a convex function a : [0, +∞[→ [0, +∞] which is superlinear at infinity and
blowing up at 0, i.e. limt→0+ a(t) = +∞, but finite and C2 with a′′ ≥ c > 0 on
]0, +∞[ (for instance a(t) = t2 + 1/t);

• (δε)ε is a suitably chosen sequence with δε > 0 and δε → 0.
• (ν̄ε)ε is a suitably chosen sequence of measures with ν̄ε ⇀ ν̄.

We will prove, exactly as in [5], that this sequence of problems admits an uniform L∞
bound for their solutions and that we can choose the parameters so that these solu-
tions converge to ν̄, thus obtaining an L∞ estimate for ν̄. The existence of solutions
for Pε is trivial by the semicontinuity of each term in the sum with respect to the weak
convergence of probability measures on the compact set � (and moreover any term
but A is actually continuous, while A is semicontinuous by convexity).

Lemma 3.2 Suppose that µ = u · Ld with ||u||L∞ ≤ M and that V is a C2 function with
V′ > 0. Then any solution νε to the problem Pε is absolutely continuous and its density
is bounded by a constant C depending only on M, d and V.

Proof First we notice that, thanks to the presence of the term A(ν) in the minimiza-
tion problem, νε must be absolutely continuous with strictly positive density almost
everywhere. Then we write the optimality conditions for νε with respect to variations
of the form νt = νε + t(ν1 − νε). From easy computations we get

ψε + Tνε + δεa′(νε)+ εχε = mε a.e.,

where ψε is the Kantorovich potential for the transport from νε to µε and χε from
νε to ν̄ε (they are unique up to additive constants) and mε is a suitable constant. We
get equality almost everywhere due to the fact that we already know that νε > 0
(we identify measures and their densities in this context). Since Kantorovich poten-
tials are Lipschitz functions and Tνε shares the same regularity of the integrand
(x, y) �→ V(|x − y|2), which is C2 and then Lipschitz, we get that even a′(νε) is Lips-
chitz continuous, and in particular it is bounded. This prevents νε to be close to 0 since
it holds limt→0+ a′(t) = −∞. Thus we get νε ≥ cε > 0. Moreover, a′(νε) is Lipschitz
continuous and, being a′′ bounded from below by a positive constant, also the inverse
of a′ is Lipschitz. This proves that νε is a Lipschitz continuous function. We can now
use regularity theory on Monge–Ampère equation to get ψ ∈ C2,α(�) ∩ C1,α(�),
since both νε and µε are bounded both from above and from below by positive con-
stants (depending on ε, anyway) and are Lipschitz continuous. The same is true for
the Kantorovich potential χε by replacing µε by ν̄ε . What we can do now is looking
for a maximum point x0 of νε . Notice that such a point will be a minimum point
for ψε + Tνε + εχε . First we prove that x0 /∈ ∂�. To prove this it is sufficient to
prove that the gradient of ψε + Tνε + εχε is directed outwards at any point of ∂�,
i.e. ∇(ψε + Tνε + εχε)(x0) · n(x0) > 0 for any x0 ∈ ∂�, where n is the outward nor-
mal vector. From the fact that the optimal transport map t from νε to µε is given by
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Fig. 1 Behaviour of ∇(ψ)
near ∂�

x0−

−

ψ(x )0

x ψ(x)

n(x )0

Ω

x

x0

t(x) = x − ∇ψ(x) we know that x − ∇ψ(x) ∈ � for almost any x ∈ � (see Fig. 1). In
this case, due to continuity up to the boundary of ∇ψ , this holds for any x and also
for x0 ∈ ∂� and implies ∇ψ(x0) · n(x0) ≥ 0. Analogously we get ∇χ(x0) · n(x0) ≥ 0.
For the gradient of Tνε it holds

∇Tνε (x0) =
∫

�

4V′(|x0 − y|2)(x0 − y) νε(dy),

and so ∇Tνε (x0) · n(x0) > 0 since V′ > 0 and for almost any y ∈ � it holds (x0 − y) ·
n(x0) > 0. This proves that x0 lies in the interior of � and this allows us to look at the
second derivatives. Taking Hessians we have

Hψε(x0)+ HTνε (x0)+ εHχε(x0) ≥ 0,

where the letter H denotes Hessians and the inequality is in the sense of positive
definite symmetric matrices. Thus we get

Hψε(x0) ≥ −I
(
2||V||C2(�) + ε

)
,

since the second derivatives of Tνε may be estimated by those of V and from the fact
that x2/2 − χ(x) is convex we deduce Hχ ≤ I. This is a uniform estimate from below
for Hψε(x0) and for the convex function φ given by φ(x) = x2/2 − ψε(x) we have
Hφ(x0) ≤ I

(
1 + ε + 2||V||C2(�)

)
. This implies Mφ(x0) ≤ (1 + ε + 2||V||C2(�))

d, and,
from νε = µε(∇φ)Mφ, we get, for ε ≤ 1,

max νε = νε(x0) ≤ 2dM
(
1 + ||V||C2(�)

)d ,

which is the desired estimate. �

Remark 1 The proof above of the fact that the gradient is directed outwards (illus-
trated in Fig. 1 as well) and no maximum point is allowed on the boundary could be
used similarly in [5], thus getting rid of the strict convexity assumption in Theorem
6.5 and of the heavy proof of Lemma 6.6. Notice that it could be possible to get
the same result even without C1 regularity for the potentials, just making the proof
a bit trickier. It would be sufficient to evaluate the increments of the potential in
small balls around x0 where the gradient is almost everywhere defined and such that
x − ∇ψ(x), x − ∇χ(x) ∈ � a.e.
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Lemma 3.3 It is possible to choose the parameters for the problem Pε , i.e. the numbers
δε and the measures ν̄ε and µε so that any sequence of minimizers (νε)ε converges to ν̄.

Proof It is sufficient to choose for ν̄ε a sequence of absolutely continuous measures
with Lipschitz continuous strictly positive densities such that Fµ(ν̄ε) ≤ Fµ(ν̄) + ε2.
Then we have A(ν̄ε) < +∞ and we may choose δε = ε2A(ν̄ε)−1. For (µε)ε we can
chose any sequence of absolutely continuous measures with Lipschitz continuous
strictly positive densities approximating µ in such a way that W2(µε ,µ) ≤ ε2. Then
we have

T(µε , νε)+G(νε)+δεA(νε)+εW2
2(νε , ν̄ε) ≤ T(µε , ν̄ε)+G(ν̄ε)+δεA(ν̄ε),

which implies

Fµ(νε)+ δεA(νε)+ εW2
2(νε , ν̄ε) ≤ Fµ(ν̄ε)+ 4DW2(µε ,µ)+ δεA(ν̄ε)

≤ Fµ(ν̄)+ ε2 + 4Dε2 + ε2

≤ Fµ(νε)+ ε2(2 + 4D).

Finally, this implies W2(νε , ν̄ε) ≤ C
√
ε and, since ν̄ε ⇀ ν̄, we get νε ⇀ ν̄. �


Remark 2 This is the point where global optimality of ν̄ plays a crucial role. In fact,
should ν̄ be only locally minimizing, we could not use the inequality Fµ(ν̄) ≤ Fµ(νε),
unless we already know that νε is in the domain of minimality of ν̄, i.e. sufficiently
close to it.

We can now state our main result and its consequence in the minimization of the
whole functional F.

Theorem 3.4 Given a compact convex set� ⊂ R
d with nonempty interior and a proba-

bility measureµ ∈ L∞(�), if the function V appearing in the definition of the functional
G is of class C2 and V′ > 0, then the minimization problem for the functional Fµ over
the space P(�) admits at least a solution and any minimizer belongs in fact to the space
L∞(�).

Proof As usual the existence is trivial due to continuity and compactness of P(�)
while, for the L∞ regularity, just apply Lemma 3.2 and Lemma 3.3 �


Corollary 3.5 Given a compact convex set� ⊂ R
d with nonempty interior, a C1 strictly

convex and superlinear function f and a C2 function V with V′ > 0, then the minimiza-
tion problem over the space P(�)2 for the functional F(µ, ν) = 1

2 W2
2(µ, ν)+F(µ)+G(ν),

where F is defined by (1.1) and G by (3.1), admits a solution and, in any minimizing pair
(µ, ν), both µ and ν are in fact absolutely continuous measures µ = u · Ld, ν = v · Ld,
with u ∈ C0(�) and v ∈ L∞(�).

Proof After the usual proof of existence by the direct method in Calculus of Varia-
tions, we refer to [3] for the regularity results on µ. Since such a measure turns out
to be absolutely continuous with continuous density (hence bounded), we may apply
Theorem 3.4 to get the regularity on ν. �
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4 An explicit example

In this section we come back to the whole problem of minimizing the functional F in a
very particular case, where we can provide almost explicit densities for the solutions.
We consider the case

• T(µ, ν) = 1
2 W2

2(µ, ν) and G(ν) = ∫

�×� V(|x − y|2)ν(dx)ν(dy), as in the previous
section;

• V(|x − y|2) = λ
2 |x − y|2 and so, setting bar(ν) = ∫

�
yν(dy), we have Tν(x) =

λ|x|2 − 2λx · bar(ν)+ λ
∫

�
|y|2ν(dy);

• F(µ) = 1
2 ||µ||2

L2(�)
, a particular case of what considered in [3].

The framework we obtain is very similar to the one in [5].

Theorem 4.1 In the specific case described above, any pair of minimizers (µ, ν) is
shaped as follows:

• µ is concentrated on a ball B(x0, rλ)(intersected with �) and has a density u given
by

u(x) = λ

2λ+ 1

(
r2
λ − |x − x0|2

)
;

• ν is concentrated on the ball B(x0, rλ/(2λ + 1)) and it is the image of µ under the
homothety of ratio (2λ+ 1)−1 and centre x0, hence it has density v given by

v(x) = λ(2λ+ 1)d−1
(

r2
λ − (2λ+ 1)2|x − x0|2

)
;

• x0 is the barycentre of both µ and ν.

Proof First we write down the optimality conditions given by Theorem 3.1 for the
minimization in ν with fixed µ and by [3] for the minimization in µ for fixed ν. We
denote by u and v the densities of µ and ν, respectively. We may suppose that the
barycentre of ν is the origin, thus obtaining Tν(x) = λ|x|2 + c. We have

{
u(x)+ ϕ(x) = c1 a.e. on u > 0;
ψ(x)+ λx2 = c2 a.e. on v > 0.

Here ϕ and ψ are Kantorovich potentials for the transport from µ to ν and from ν

to µ, respectively. From the second condition we can infer ∇ψ(x) = −2λx a.e. on
v > 0. Being ν absolutely continuous, this equality is valid ν−a.e.. This means that
the optimal transport map t from ν to µ is given by t(x) = x − ∇ψ(x) = (2λ + 1)x.
By uniqueness of the optimal transport plan, which is in this case expressed both
as a transport map from ν to µ and viceversa, we know also the optimal transport
map s from µ to ν which will be s(x) = x/(2λ + 1). From duality theory in optimal
transportation we know the following equality

ϕ(x)+ ϕc(s(x)) = c(x, s(x)) = 1
2
|x − s(x)|2,

and thus we get u(x) = c1 − 1
2 |x − s(x)|2 + ϕc(s(x)). We do already know that u is

Lipschitz continuous (by [3]), and this implies that the set {u > 0} is an open set.
Consequently the same is true for {v > 0}, which is just an homothety of it. Since ϕc
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is a Kantorovich potential from ν to µ, we know that it must agree (up to constants)
with ψ on any connected component of the open set {v > 0}. So, let ω ⊂ � be a
connected component of {u > 0}. On (2λ+ 1)−1ω we have ϕc = ψ + c3 and so we get

u(x) = c4 − 1
2
|x − s(x)|2 + ψ(s(x)) = c5 − |x|2 λ

2λ+ 1
.

From this expression it is clear that ∂ω \ ∂� (where u must vanish) is contained in a
sphere around 0. This implies that 0 belongs in fact to ω, since no boundary of ω is
allowed in the interior of a certain ball around 0. So there is in fact just one connected
component for {u > 0} and so we get

u(x) =
[

c − |x|2 λ

2λ+ 1

]+
. (4.1)

From this it is easy to recover the density v of ν since ν = s�µ and we get the thesis.
The point x0 which turns out to be the centre of the balls which are supports for µ
and ν is in this notation 0, the barycentre of ν, as in the thesis. It is clear that in this
case µ and ν share the same barycentre since they are homothetic. �

Remark 3 In the example of Theorem 4.1 the density v shares the same regularity of
u except at the points corresponding to boundary points of�where u is positive, i.e. if
at x0 ∈ ∂� it happens u(x0) > 0 then at s(x0) we have a jump for v. It is clear from the
fact that u is 2λ/(2λ + 1)-Lipschitz continuous (it follows from the explicit formula)
that we have, recalling also

∫

�
u dLd = 1,

1 ≤
(

inf u + 2λ
2λ+ 1

D
)

|�|,

where D is the diameter of�. This implies, for small�, inf u > 0. In this case u would
be positive at any point of ∂� and v discontinuous at any point of s(∂�). This gives
examples when the L∞ regularity for v cannot be improved up to v ∈ C0(�).

Remark 4 In the explicit example above there remain to be determined both the
constant c (or the radius rλ) and the position of the barycentre x0 in the formula for
u. In some simple cases this is possible too. Notice that, once fixed x0, the constant
c may always be recovered by imposing the condition of being probability measures.

Fig. 2 A solution for a large
ball ν

µ

Ω
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Fig. 3 The solution for a small
ball �

Ω

µ

ν

Fig. 4 The position of the
centre and of the barycentre

Ω

0=bar(  )µ
0

µbar(  )

Ω

For instance if� is a ball, we may see that x0 may not be the barycentre of a density u
shaped as in (4.1) unless the set B(x0, 2λ−1(2λ+ 1)) ∩� is a ball around x0. This hap-
pens for large � whenever the ball B(x0, 2λ−1(2λ+ 1)) does not touch the boundary
∂� or, in general, when x0 is the centre of the ball �. In the first case (� a large ball,
as in Fig. 2, where the case of a generic � is represented) we have several solutions
for the problem (non-uniqueness), obtained from each other under translations, and
u and v are continuous; in the second (� a small ball, Fig. 3) we have uniqueness of
the solution, with u a radial continuous function around the centre and v a rescaling
of u on a smaller ball.

Remark 5 In general, if � is not a ball, the fact that 0 is the barycentre of a distribu-
tion of mass which is radial around 0 itself imposes some constraints on the position
of 0 with respect to ∂�. If the domain � cuts a part of the supporting ball from one
side, then the centre of the ball could be no longer the barycentre. Figure 4 shows this
effect, as well as a situation where the support touches the boundary on two sides and
the centre of the ball is actually the barycentre.

Remark 6 It is interesting to see the behaviour of the solution (µ, ν) as λ → 0, +∞.
In the first case, as λ → 0, from (4.1), we easily get that u tends to a constant density.
This comes from the fact that the importance of the functional G decreases, and this
allows us to choose ν under no concentration criteria; in particular at the limit we can



J Glob Optim (2007) 38:129–141 141

choose ν = µ, thus getting T(µ, ν) = 0: then the only thing to do is choosing µ so that
we minimize F, which exactly happens only for constant density measures. On the
other hand, as λ → +∞, the role played by G is increasing and in the end we will get
a Dirac measure ν = δ0, (and Dirac masses are the only minimizers of G). This can be
seen from the fact that the homothety ratio between ν and µ tend to 0. The optimal µ
can be retrieved from the formula in Theorem 4.1 and we can easily see that it holds
u(x) = (r2 − |x − x0|2)/2.

Acknowledgements The author acknowledges the support of the project “Calcolo delle Variazioni”
of the Italian Ministry of Education. Moreover, the ideas of this work, much linked to the previous
joint papers, have been discussed together with Prof. Buttazzo and Prof. Carlier, to whom sincere
thanks are addressed.

References

1. Bouchitté, G., Buttazzo, G.: New lower semicontinuity results for nonconvex functionals defined
on measures. Nonlinear Anal. 15(7), 679–692 (1990)

2. Buttazzo, G., Oudet, E., Stepanov, E.: Optimal transportation problems with free dirichlet regions.
Prog. Nonlinear Diff. Equat. Appl. 51, 41–65 (2002)

3. Buttazzo, G., Santambrogio, F.: A model for the optimal planning of an urban area. SIAM J. Math.
Anal. 37(2), 514–530 (2005)

4. Carlier, G., Ekeland, I.: The structure of cities. J. Global Optim. 29(4), 371–376 (2004)
5. Carlier, G., Santambrogio, F.: A variational model for urban planning with traffic congestion.

ESAIM Control Optim. Calculus of Variations 11(4), 595–613 (2005)
6. Maddalena, F., Solimini, S., Morel, J.-M.: A variational model of irrigation patterns. Interf. Free

Bound. 5, 391–415 (2003)
7. McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–159 (1997)
8. Santambrogio, F.: Misure ottime per costi di trasporto e funzionali locali (in italian). Laurea Thesis,

Università di Pisa, advisor: G. Buttazzo, available at www.unipi.it/etd and cvgmt.sns.it (2003)
9. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, AMS (2003)

10. Xia, Q.: Optimal paths related to transport problems. Comm. Cont. Math. 5(2), 251–279 (2003)


	Transport and concentration problems with interaction effects
	Abstract
	Introduction
	Preliminaries on optimal transportation
	Optimality conditions for the interaction case
	An explicit example
	Acknowledgements


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


